

Adsorption of multivalent ions in cementitious materials: importance of electrostatics

Christophe Labbez, Marta Medala, Isabelle Pochard, André Nonat

Institut Carnot de Bourgogne, UMR 5209 CNRS - Université de Bourgogne, France

Mechanisms and modelling of waste/cement interactions- Le Croisic 2008

Generalities on ion adsorption

- Ion adsorption is important in many context:
- water treatment
- electrolyte transport
- protein association
- colloidal stability...
- The driving forces of ion adsorption may be:
- Coulomb interactions
- Dispersion interactions
- Hydrophobic interactions
- Ion pairing

Conclusion

Calcium silicate hydrate (C-S-H)

- C-S-H : nanoparticles, lamellar structure;
- Negative surface charge due to the titration of silanol groups: -Si-O⁻ + H⁺ \rightleftharpoons -Si-OH

Questions

• What role is played by electrostatic in the retention of ions in cement systems?

• Can electrostatic explain the adsorption of anions on the negatively charged C-S-H particles?

• How strong is the adsorption of traces of multivalent cations on the C-S-H particles?

Solid/solution Interface

Contact of a charged solid to a solution: => formation of the electric double layer (DL).

Solid/solution Interface

Ion adsorption at the solid/solution interface

 $\Gamma_i^{ads} = \int_{x=0}^{x=\infty} \rho_i(x) - \rho_i(bulk) dx$ with ρ : ion density at the position x

Solid/solution Interface

Conclusion

Model and simulation

• Model:

Surface: discrete titratable sites Si-O⁻ + H⁺ → Si-OH pK_a= 9.8

- Electrolyte solution: primitive model
- Simulation:
- Grand Canonical Monte Carlo

model surface details; Site density (Si-OH) 4.8 / nm²

Simulation box detail

Particle dispersion

Primitive model

Coulomb interaction :

$$u(r_i, r_j) = \frac{z_i z_j e^2}{4 \prod \epsilon_0 \epsilon_r (r_i - r_j)} \quad \text{when } (r_i - r_j) > (\sigma_i + \sigma_j)/2$$

Hard sphere interaction :

$$u(r_i, r_j) = \infty$$
 when $(r_i - r_j) < (\sigma_i + \sigma_j)/2$

Model for surface ionisation

• Protonation and deprotonation of metal oxide (M-O):

 $-M-O^{-} + H^{+} \stackrel{\mathsf{K}}{\leftrightarrows} -M-OH$

• Equilibrium constant is the activity product of the chemical species:

Grand Canonical Titration

Illustration of the 2 step process for the deprotonation: release of a proton and removal of an ion pair $(H^{+}) =$

One can show that the Boltzmann factor of the trial energy can be expressed as $\exp(-\beta\Delta U) = \frac{V}{N_{an}+1} \exp(+\beta\mu_{an}) \exp(-\beta\Delta U^{el}) \exp(-\ln 10.(pH-pK_{a})) \text{ for protonation}$ $\exp(-\beta\Delta U) = \frac{N_{an}}{V} \exp(-\beta\mu_{an}) \exp(-\beta\Delta U^{el}) \exp(+\ln 10.(pH-pK_{a})) \text{ for deprotonation}$

where V is the volume of the box, $N_{_{an}}$ and $\mu_{_{an}}$ the number and the chemical potential of the anion.

Labbez, C., Jönsson, B. Lect. Note in Comp. Sci. (2007)

Surface charge density

Ion-ion correlations strongly promote surface charge density

<u>Results</u>

Surface charge density

⇒ The charge formation on C-S-H is well described by the electrostatic interactions.

Labbez, C.; Jönsson, B.; Pochard, I.; Nonat, A.; Cabane B., J. Phys. Chem. B 2006, 110, 9219

Charge reversal

Model C-S-H/solution interface

Charge reversal

Ion-ion correlations induce Ca²⁺ condensation at the C-S-H surface that eventually overcompensate its surface charge

Charge reversal

Ion-ion correlations quantitatively explain charge reversal of C-S-H

Labbez, C.; Jönsson, B.; Pochard, I.; Nonat, A.; Cabane B., J. Phys. Chem. B 2006, 110, 9219

Concentration profile

Bulk solution: 18 mM CaOH₂ + 10 mM Na₂SO₄, pH 12.7

Charge reversal explains adsorption of anions

SO₄²⁻ versus Ca²⁺ adsorption on C-S-H

Increasing the Na_2SO_4 concentration results in the desorption in calcium and the subsequent lost of the overcharging of C-S-H which, in turn, causes the desorption of sulphate.

<u>Results</u>

Ca²⁺--SO₄²⁻ ion pairs

Sulfate and sodium adsorption Simulations ($\overline{\underline{\bullet}}$) versus experiments ($\overset{0}{\overset{0}{\bullet}}$)

A very good agreement between the experiments and simulations is obtained when both the electrostatic interactions and the specific ion pairing between Ca and SO_4 ions are accounting for.

Electrokinetic potential Simulations ($\overline{\underline{-}}$) versus experiments ($\overset{0}{\overset{0}{\circ}}$)

A very good agreement is obtained

Heavy metal (M³⁺) retention

M³⁺ retention versus their bulk concentration for various charge density. The bulk contains always 100 mM Na⁺ and 10 mM Ca²⁺.

Conclusion

Concentration profile

The bulk contains 100 mM Na⁺, 10 mM Ca²⁺ and 0.01 mM M³⁺.

At the interface $C_{M3+} >> C_{Na+}$ while in the bulk $C_{Na+} = 10^4 C_{M3+}$

Competition Na⁺-Ca²⁺/M³⁺

Retention of heavy metals is all the more important as calcium and sodium bulk concentration is low.

Conclusion

- For systems containing negatively charged calcium silicate hydrate nanoparticles (C-S-H) dispersed in salt solution mixtures $(Ca(OH)_2/Na_2SO)_4$, we presented measurements and Monte Carlo (MC) simulations of sulfate and sodium adsorptions and of electrokinetic potentials (ζ).
- The interplay of coulomb interactions and ion pairing allows us to explain quantitatively the adsorption of sulfate ions.
- For C-S-H particles dispersed in solutions containing traces of multivalent cations in addition to various (Ca(OH)₂/NaOH) salt mixtures a very high multivalent cation retention is found.

Perspective

- Inclusion of heavy metal speciation
- Effect of the C-S-H charge on heavy metal speciation

Acknowledgements

- Financial supports:
 - European NANOCEM Consortium
 - Marie Curie Training Network
- Computer Facilities
 - CRI, Université de Bourgogne
 - LUNARC, Lund University
- Colleagues:
 - Bo Jönsson from Lund University
 - Paul Glasser, University of Aberdeen (UK)